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Abstract-A buoyancy-extended k-e model of turbulence has been developed for calculating the dynamical 
and thermal fields in plane turbulent jets and forced plumes in a uniform stagnant environment. The 
governing partial differential equations (continuity, lateral and longitudinal momentum, thermal energy, 
turbulent kinetic energy k and its dissipation rate E) are solved by means of an eficient computer program 
(called JEPHTE) for elliptic unsteady differential equations. A version assuming C, to be an empirical 
function of the densimetric Froude number at the source has been tested. The predictions are compared 
with ex~rimental data and/or computed results obtained with more complex modellings of the buoyancy 

effects. 

1. INTRODUCTION 

THE PROBLEM of reducing the pollution in the atmo- 
sphere and water is a serious concern for scientists 
and engineers. In order to minimize the impact of 
some unavoidable emission of pollutants into our 
environment, the dispersion of pollutants should be 
predictable. The fluid motion governing this dis- 
persion is mostly turbuIent and under gravitational 
influence, and so, it is important to study turbulent 
buoyant flows and develop reliable methods for their 
prediction. 

This paper is concerned with the calculation of tur- 
bulent jets and forced plumes issuing vertically into 
uniform stagnant surroundings. The flows considered 
are two-dimensional and the buoyant jet is generated 
by discharging lighter fluid vertically upwards. To 
close the mean-flow equations a k--E turbulence model 
has been introduced so as to determine the unknown 
terms representing the turbulent fluxes of heat and 
momentum. The k-c model involves the solution of 
transpo~ equations for the turbulence energy k and 
its dissipation rate E. 

One way of accounting for buoyancy in this model 
makes use of the algebraic-stress model (ASM) 
approach [l]. It has been tested successfully by many 
workers [2, 31. Modelled transport equations for the 
Reynolds stresses and heat fluxes are simplified to 
yield algebraic relations. The buoyancy terms also 
appear in these relations, leading effectively to non- 
isotropic eddy viscosities and diffusivities as functions 
of some local Froude number. This modelling auto- 
matically results in a buoyancy influence on C, [2]. 

In the present work, the buoyaacy effects are 
accounted for by including buoyancy terms in the k 

and E equations without using the ASM approach. This 
‘standard’ k--E model has been widely tested and is 
capable of predicting a fairly large variety of hydraulic 
flow situations with the same empirical input. Com- 
plete universality of the empirical set of constants 
cannot and should not be expected, and experience 
has shown that even in certain fairly simple flows some 
of them require different values. 

Using the constant value C, = 0.09, this paper 
shows (Section 4.1) that the development of thermal 
and dynamical mean fields is correctly predicted in a 
plane non-buoyant jet, where temperature may be 
considered as a passive contaminant. On the other 
hand, in the case of a pure plume, flow completely 
dominated by the buoyancy forces, the centre-line 
velocity is over-estimated by about 20%. Because 
non-buoyant jet and pure plume are the two limiting 
forms of the heated jet, the k-e model has been 
extended so that all plane jets can be predicted with 
the same empirical input. Thus a version assuming C, 
to be an empirical function of the discharge Froude 
number has been tested. 

This paper deals with the application of the buoy 
ancy-extended k-e model to the calculation of tur- 
bulent plane jets and forced plumes in uniform stag 
nant surroundings and comparisons are made 
between prediction and experiment. Section 2 pro- 
vides a presentation of the physical and mathematical 
model and Section 3 presents a statement of the 
boundary conditions together with a brief description 
of the solution method. Comparison between model 
simulations and experimental data is provided in Sec- 
tion 4, while concluding remarks are presented in 
Section 5. 
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NOMENCLATURE 1 
A,,,, A,, A,, A, axial decay constants for 

velocity (equation (24)), temperature 
(equation (25)), turbulent kinetic 
energy (equation (26)), dissipation rate 
(equation (27)) in a pure jet 

B,, B,, Bk, Be axial decay constants for 
velocity (equation (30)), temperature 

(equation (31)) turbulent kinetic 
energy (equation (32)) dissipation rate 
(equation (33)) in a pure plume 

B buoyancy production/destruction of k 

(equation (13)) 
C term of convection in k-equation 

(equation (11)) Uj(dk/3x,) 

CP constant in the turbulence model 
(equation (10)) 

C,,, C,, constants in the turbulence model 

D 

DO 
F 

G 

Sj 

9 

HO 
KT 

k 

P 
B 

Ph 
P 
Re 

(equation (17)) 
term of diffusion in k-equation 

(equation (14)) 
jet/plume exit width (Fig. 3) 
discharge densimetric Froude number 

(equation (21)) 
jet/plume exit Grashof number (equation 

(20)) 
components of gravitational acceleration 

(0, 0, -9) 
gravitational acceleration 
height of the vertical slot’s wall (Fig. 1) 
turbulent (or eddy) diffusivity (equation 

(6)) 
turbulent kinetic energy per unit mass 

(equation (11)) 
mean pressure (equation (2)) 
stress production of k (equation (12)) 
turbulent Prandtl number (equation (7)) 
fluctuating pressure (equation (14)) 
jet-plume exit Reynolds number 

(equation (19)) 

StV,, Se, spreading parameters for velocity 
field in pure jet (equation (22)) pure 
plume (equation (28)) 

S”, > Sop spreading parameters for 
temperature field in pure jet (equation 
(23)), pure plume (equation (29)) 

t time 

v, components of mean velocity in tensor 
notation 

u horizontal mean velocity 

uJ components of fluctuating velocity in 
tensor notation 

turbulent shear stresses in tensor 
notation 
turbulent heat flux in xi-direction 
time-mean square of the vorticity 
fluctuation [20] 
vertical mean velocity 
velocity scale (equation (34)) 
vertical turbulent heat flux 
Cartesian coordinates in tensor notation 

(Fig. 1) 
cross-stream (horizontal) coordinate 
location of vertical symmetry line (Fig. 

3) 
longitudinal (vertical) coordinate 
location of virtual origin (Fig. 3) 
length scale (equation (34)). 

Greek symbols 
volumetric expansion coefficient, 

(equation (4)) (1 /p)(&+% 
mean temperature excess, 0 -ON 
temperature scale (equation (34)) 
Kronecker delta : 1 for i = j; 0 for i # j 
velocity half-width, i.e. values of x at 
which W = W,/2 (Fig. 3) 
temperature half-width, i.e. values of x at 
which A0 = A@,/2 (Fig. 3) 
rate of dissipation of k (equation (17)) 
similarity coordinate, (x - x,)/6 
similarity coordinate, (x - x,)/?T, 
molecular kinematic viscosity (equation 

(19)) 
turbulent (or eddy) viscosity (equation 

(5)) 
fluid density (equation (4)) 
constant in the turbulence model 
(equation (16)) 
constant in the turbulence model 

(equation (17)) 
mean temperature (equation (3)) 
mean square temperature fluctuation. 

Subscripts 

E centre-line value 

i,i indices in tensor notation or finite- 
difference integers (Fig. 2) 

: 
maximum value 
natural (initial) ambient value 

0 value at the jet/plume exit 
r reference value (equation (34)). 
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2. THE PHYSICAL AND 

MATHEMATICAL MODEL 

The fluid is assumed to be incompressible. The 
difference between the time-averaged local fluid den- 
sity p and the ambient density pN is small, so that 
]p - pN]/pN << 1 in buoyant jets. Thus using the ambi- 
ent density pN instead of the local density p produces 
a small error in the deception of the inertial force. 
However, the difference ]p -pN] may be important in 
the description of the gravitational body forces. 

This so-called Boussinesq assumption will be 
adopted in the rest of this paper. This means that 
attention is restricted to cases in which the induced 
density deviations are small compared to the total 
fluid density ; it is so for most en~ronmen~l appli- 
cations. 

Under these assumptions, the time-averaged equa- 
tions governing, the velocity and temperature dis- 
tribution in two-dimensional plane vertical buoyant 
jets or plumes may be written as 

aw- 
-L= 
a+ 

0 
vr oc Lk’/’ 03) 

where L is the turbulence iength scale or mixing 
length. Moreover, the energy dissipation E is modelled 

(2) by the Kolmogorov relation 

- 
a3 -pjE& _!g (3) 

I i 

where equation (1) is the continuity equation, equa- 
tions (2) the momentum equations and equation (3) 
the temperature equation. As is usual for these kinds 
of fully turbulent flows the molecular transport terms 
have been neglected since they are small when com- 
pared with those of turbulent transport. 

The present version of the model does not include a 
conservation equation for some species concentration 
and therefore the density difference term in equation 

(2) is only related to the temperature of the fluid 
through the following linear equation of state : 

P-PN 
- = -jl(O-0,) 

PN 

where p is the thermal expansion coefficient of the 
fluid. fl may be a function of 0, but is assumed con- 
stant to a good approximation for cases with limited 
temperature ranges (for other cases see ref. [4]). 

The numerical solution of the above set of equa- 
tions requires the introduction of additional 
expressions or additional transport equations for the 
turbulent shear stresses uaaj and the turbulent heat 
fluxes 9 For the k-8 model adopted in the present 
work, uiui and g are computed using the eddy vis- 
cosity and eddy diffusivity concepts, thus 

__;;B=K do i T axj (63 

where vr is the eddy viscosity and iu, the eddy diffu- 
sivity. 

Experiments indicate that vr and Kr are not con- 
stants but vary in a flow and from one flow to another, 
but tbeir ratio 

pr, = $ 
T 

which is the turbulent Prandtl number, is approxi- 
mately constant. In the present work PrT is assumed 
to be constant and the value adopted is defined below. 
So the closure problem is now shifted to dete~in~ng 
the distribution of vr. 

The k-e model characterizes the local state of tur- 
bulence by the turbulent kinetic energy k and its rate 
of dissipation E. The eddy viscosity coefficient vT is 
evaluated using the Prandtl-Kolmogorov hypothesis 

&3/z 
&CC---. 

L 

We shall adopt the commonly made 
that the length scales in expressions (8) 
equal [ 11, yielding the basic relation 

k2 
VT = C#T 

(9) 

assumption 
and (9) are 

(IO) 

where C, must be empirically fixed. 
The turbulent kinetic energy k is obtained from the 

following transport equation : 

where B is the rate of shear production of turbulence 
energy 

--ar;, 
B = -uiuj~ 

I3 the rate of buoyancy production/destruction of tur- 
bulence energy 

B = -pgjre (13) 

E the dissipation rate of k, and D the direct dissipation 
by diffusive transport 

a 
D=-q C %l% 

---u 

2 J 
_,A% +Pu,& 

-1 axj pN y . 
(14) 

At high turbulent Reynolds numbers molecular 
diffusion is negligible so that the diffusive transport 
of kinetic energy, equation (14), is reduced to and 
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Table 1. Values of the constants in the k-g model 

009 1.0 1.3 1.44 1.92 

The model, which is in common use [8], consists of 
a simple gradient type representation 

--_ ~ 

__u_+!?!!= _v,E %& 

2 J PN cl& axi W) 

where bk is an empirical constant to be defined later. 
The closure of the model for calculating the 

dynamical field is completed through the following 
equation for the turbulence energy dissipation rate 

[93 : 

The value of the constant C, appearing in equation 
(IO) was chosen with reference to non-buoyant local- 
eq&ibrium shear layers where the produciion Sp and 
the dissipation E are in approximate baIance. For these 
flow equations, equations (5), (10) and (12) can be 
combined to C, = (u,u&)’ and measurements 
yielded u ,uJk 2: 0.3 so that C,, = 0.09. 

In fact, universality of the constant C, cannot and 
should not be expected: it may acquire a somewhat 
different value even in certain fairly simple flows [S]. 

As will be seen in Section 4.2, the n~me~cal results 
conc~ru~n~ the centre-line velocity decay of the ver- 
tical pure plume is overpredicted by about 20% when 
using the standard value C, = 0.09. 

The following functional relationship has been 
introduced in order to make C, sensitive to the buoy- 
ancy discharge 

C,,(F) = 0.09+0.04[1+tanh(2logF-‘+3)] (18) 

so that CD(~) = 0.09 if the discharge Froude number 
F tends to infinity (pure jet) and increases to 0.17 
when F = 0 (pure plume). Relation (I@, devised on 
an entirely empirical basis without physical interpret- 
ation or justi~cation~ ai~nificantly improves the k-8 
model’s ability to predict plane buoyant jets issuing 
in uniform stagnant surroundings [6J. 

The constant value of the turbulent Prandtl number 
PrT, namely 0.4, has been determined by comparing 
predictions with experimental data of the centre-line 
mean thermal intensity decay in a heated vertical jet 
[7]. This optimized value is to be compared with the 
0.5 recommended by Chen and Rodi 131 in their review 
of experimental data for vertical buoyant jets. 

The values of the five empirical constants in the k- 
E model are listed in Table 1. The values of the con- 
stants rk and rr, were taken from Launder and Spald- 
ing [lo, 111. The values retained for the coefficients 
C,, and C,* are those recommended by Rodi [t]+ 

3. SOLUTION OF EDUATIONS 

The previous section has outlined a closed system 
of elliptic partial differential equations which can of 
course be solved for the present problem only when 
the relevant initial and boundary conditions have been 
specified. 

For all the eases considered in the present work, 
plane jet or plume vertically discharged into initially 
stagnant surroundings, the flow is symmetrical to the 
jet (or plume) axis and so calculations can be per- 
formed only over half of the flow. The definition 
sketch of the rectangular calculation domain is shown 
in Fig. 1. 

The right-hand boundary of the solution domain 
coincides with the symmetry line x = x,. On this 
boundary all variables, except the U velocity which is 
equal to zero, have a zero x-gradient. 

At the left-hand boundary (x = 0) and the upper 
boundary {z = zmax), Neumann conditions are 
imposed for V, W, 0, k and E. At the lower boundary 
(z = 0) and the vertical nozzle’s wall (x = x,-&/2, 
0 < z < H,), zero values are prescribed for U, W, k 
and E whereas the temperature is set equal to the 
constant ambient value. 

At the source of the jet (or plume) located at z = Ho 
and x$-D,/2 < x < X, the distribution of all depen- 
dent variables must be specified. Unfortunately, mea- 
sured exit profiles for velocity W, and temperature O0 
were not available so that uniform profiles have been 
assumed. The shapes and levels of k and E exit profiles 
are those chosen by Sini [6] so as to obtain the best 
numerical prediction of a nob-buoyant plane jet with 
a second-order moment closure model. Near the edge 
of the nozzle, the presence of the wall boundary 
induces rather sharp turbulence intensity profiIes, the 
levels of k and E were chosen as km,/ Wi = 2.0 x IO- ’ 
and E,&,/ Wi f: 1.6 x 10e3. Out of this boundary 
region, the turbulence exit profiles are assumed to be 
flat with relatively low levels namely k. = 0. 14km0 and 
&g = o.o2E3,0. 

Initially, the ambient fluid is assumed to be of uni- 
form density and motionless with weak homogeneous 
turbulence intensities ; k, and E~ are assigned all over 
the calculation domain, 

3.2. Solution procedure 
A finite difference approximation has been used. 

The finite difference mesh is regular and each rectan- 
gular cell of dimension AX AZ is located by the position 
of its centre : (i- 3/2)Ax, (j- 3/2)Az. The boundary 
conditions are specified in the dashed fictive cells 
which border the calculation domain (Fig. 2). The 
spatial discretization makes use of a staggered grid 
(Fig. 2) : the velocity components are defined for the 
centres of the cell sides while all other scalar depend- 
ent variables are defined at the centre point of the cell. 

The computer program, code-named JEPHTE, 
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(j-@!hz 

trk? 
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FIG. I. Definition sketch of the calculation domain. 

0 Ci-g)Ax 

FIG. 2. Boundaries of the calculation domain (the boundary 
conditions are specified in external dashed fictive cells). The 
upper sketch shows the staggered grid and the location of 

the nodes where dependent variables are defined. 

developed at I.M.S.T. uses the M.A.C. method [12] 
as presented by Hirt and Harlow [ 131. The numerical 
procedure, explicit in time, uses centred differences 
for the diffusion terms and an upwind-weighted 
scheme for the advection terms. At each time step, the 
divergence condition (continuity) on mean velocities 
is directly satisfied by the mean of the artificial com- 
pressibility method described by Chorin [14]. This 

implicit iterative method lies in simultaneous relaxing 
velocity and pressure fields and is equivalent to solving 
a Poisson equation for the pressure [15]. Since the 
numerical methods involved are now well known they 
will not be developed further here, for further details 
see for example Gaillard 1161 or Sini [6]. 

The time-dependent problem was run from the 
initial state to a final steady state by continuing the 
process till quantities ceased to change with time. This 
paper deals only with numerical results obtained in the 
steady state for which experimental data are available. 

With a grid size of 5000 nodes, a typical calculation 
took approximately 2000 time steps to obtain the 
steady-state solution, requiring about 220K-words of 
core store and an execution time of 2 min on a CRAY- 
1 S-1000 computer. 

4. PRESENTATION AND 
DISCUSSION OF RESULTS 

In the previous sections a mathematical model was 
described which will now be used to simulate turbulent 
forced plumes [or buoyant jets} generated from a lin- 
ear source which emits a flux of buoyancy and 
momentum, exhausting into uniform and stagnant 
surroundings. The buoyancy force acts in the direc- 
tion of the jet velocity at the source. 

The flow is governed by the relative importance of 
the buoyancy and the momentum fluxes at the source. 
When buoyancy effects are negligible, the jet is 
governed by the momentum flux only and is called 
‘pure jet’ or simply ‘jet’. The other limiting case, in 
which the buoyancy effects completely dominate the 
flow, is termed ‘pure plume’. These two limiting flow 
situations are very important test cases because they 
become self-similar far enough downstream from the 
source and so detailed experimental data of both 
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mean-flow and turbulence quantities are available for 
comparison with the numerical predictions. Conse- 
quently they will be considered separately hereafter. 

The Reynolds number Re at the source in the case 
of inertia-dominated jets 

WJ’o 
Re = v (19) 

and the Grashof number G at the source in the case 
of buoyancy-dominated jets 

G = BsDi(@o -@No) 
V2 

(20) 

are high enough to ensure that the viscous effects 
are negligible compared to inertia and/or buoyancy 

effects. 
The relative importance of inertial and buoyancy 

forces at the source can be characterized by the dis- 
charge densimetric Froude number F 

(21) 

So, in the case of a pure jet F x co while in the case 
of a pure plume F z 0. 

4.1. Turbulent pure jet 
In this section a heated turbulent plane jet exhau- 

sting into uniform stagnant surroundings is 
considered. The temperature may be considered as 
a passive contaminant and the buoyancy effects are 
negligible (F = 103). The Reynolds number at the 
source is Re = 3.3 x 10’. A definition sketch of the 
flow is given in Fig. 3. 

Far enough downstream from the source the flow 
becomes self-similar in the sense that the mean-flow 
and turbulence profiles become independent of down- 
stream distance when expressed in terms of local 
characteristic scales : 

(a) the velocity half-width 6(z) ; 
(b) the ccntre-line velocity W,(z) ; 
(c) the temperature half-width &(z) ; 
(d) the maximum temperature excess A@,(z) ; 

which are defined in Fig. 3. 
A similarity analysis providing some information 

on the expected flow behaviour may be carried out 
(see e.g. ref. [ 171) yielding the following relations : 

(22) 

(23) 

(25) 

Zone offlow 
establishment 

FIG. 3. Definition sketch of the pure jet. 

$=A, 
w: 
!d= A, 

w: 
where S,, S,,, A,++ A,, Ak and A, are constants. 

Rodi [18], Chen and Rodi [17] and List [19] 

reviewed mean-flow and turbulence measurements 
concerning self-similar turbulent jets. For most quan- 
tities the experimental data selected for comparison 
with the computed results are those recommended by 
these reviewers. The numerical results are also com- 
pared with those obtained by Sini [6] using a second- 
moment turbulence closure model (called below 
GSHIFT) and with those obtained by Malin and 
Spalding [20] using a buoyancy-extended version of a 
k-W model, W being the time-mean square of the 
vorticity fluctuations. 

The decay of the centre-line velocity W, and the 
maximum temperature excess A@, are presented in 
Fig. 4. A relatively close agreement can be observed 
between experimental and computed results except 
for a small discrepancy for the centre-line velocity 
decay in the initial region of the flow which may 
be due to uncertainties on the levels of turbulence 
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FIG. 4. Decay of centre-line velocity and temperature excess in the pure jet. Experimental data: 0, 
Bradbury [21] ; I), Davies et al. [27] ; A, Gutmark and Wygnauski [28] ; V, Miller and Comings [29]; 0, 
n , Bashir and Uberoi [30]; 0, van der Hegge Zijnen [31]. Predictions: -, JEPHTE (present work); 

----, GSHIFT [6]. 

Table 2. Longitudinal variations of the main characteristics in self-similar plane jets 

.._ 

Experimental data 

JEPHTE present k-.e model 
GSHIFT [6] second-moment 

closure model 
k-w model Malin and 

Spalding [20] 
k-c model Hossain 

and Rodi [22] 

S WI S, A, AB A ~~ A, 

0.11 0.14 2.4 2.0 0.067 0.014 
[17] [I71 P71 1171 [211 WI 

0.10 0.133 2.35 2.02 0.067 0.013 

0. IO5 0.108 2.38 1,?7 0.06 0.012 

0.11 0.16 2.51 1.96 0.065 0.0135 

0.116 0,154 2.37 2.10 0.068 0.0135 

intensities at the exit slot [6]. Downstream 
((z-z&D0 > 10) the results are closely related con- 
firming the validity of the self-similar relations (24) 
and (25). The decay-law constants Aw and A8 agree 
well (Table 2) with the values recommended by Chen 
and Rodi [17]. 

The calculated and measured values of the rates of 
spread of the dynamical and thermal fields, S, and 
So, are also shown in Table 2. Concerning S,, the 
present k-e model induces the value 0.10, which 
appears to be a weakly underestimated value when 
compared with the recommended [ 181 average exper- 
imental value, namely 0.11. But it should be noted that 
there is a large discrepancy between the experimental 
data going from 0.087 [23] up to 0.115 [24]. 

The longitudinal distribution of the turbulent kin- 
etic energy and its dissipation rate at the flow axis 
are presented dimensionlessly on Fig. 5 together with 
those obtained by Sini [6] using a bind-moment 
turbulence closure (code GSHIFT). As it can be 
observed the self-similarity is not completely estab- 
lished for these turbulent quantities at the section 
(z-z&/D,, = 25. Further downstream, the axial 
dimensionless levels of k and E tend to stabilize at a 
constant vafue according to the similarity laws 126, 
2’77. As it can be seen (Table 2) none of the various 

computed values of Ak and A, are significantly differ- 
ent from the recommended experimental data. 

The following presented results concern the cross- 
stream similarity profiles of both mean-flow and tur- 
bulence quantities. Local characteristic scales are used 
to normalize all these results which are expressed as 
dimensionless functions of the dimensionless geo- 
metrical variables : q = (x-x,)/d for the dynamical 
field and qe = (x--x,)/& for the thermal field. 

Figures 6(a) and (b) show the self-similar profiles 
of mean velocity and mean temperature excess, respec- 
tively. The dashed curves depict computed results 
obtained with GSHIFT while the symbols represent 
experimental data. The calculated profiles are in excel- 
lent agreement with the experimental data except at 
the edges of the jet where the temperature excess is 
clearly overpredicted by the present k-c model. This 
has been previously noted by various workers [6,20, 
223. The observed disc~~ancy is emphasized when 
using an unsteady elliptic model because the tem- 
perature increases weakly at the edges of the jet due 
to the transient recirculating motion. 

The turbulent kinetic energy self-similar profile is 
shown in Fig. ?(a). The model predicts the correct 
level on the centre-line of the jet and also a value of 
the peak very close to the experimental one. However, 
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FIG. 5. Longitudinal distribution of the turbulent kinetic energy and its dissipation rate at the pure jet 
axis. Predictions: -, JEPHTE (present work); ----, GSHIFT [6]. 

(b) 

FIG. 6. Similarity profiles in the pure jet : (a) mean velocity, (b) mean temperature excess. Experimental 
data: 0, Bradbury [21]; 0, Davies ef al. [27]; A, Gutmark and Wygnanski [28]. Predictions: --, 

JEPHTE (present work) ; ----, GSHIFT [6]. 

a very notable discrepancy appears near the edge of mental profile of Bradbury [21] has a smoother shape 

the flow. This is clearly connected with the level of than the computed one but the comparison is satis- 

turbulence intensity initially present in the ambient factory. 

fluid. Presently the uniform ambient turbulence inten- 
sity was set as k/W: = 2.8 x 10e3, which may be writ- 

4.2. Turbulent pure plume 

ten according to equation (24) as 
In this section, the flows considered are vertical 

plane plumes with a density lower than that of the 

Therefore, in the section concerned in Fig. 7(a) the 
turbulence intensity at the edge of the flow must be 
about 1.25 x lo-‘, making clear the discordance in 
question. 

It is of interest to consider the turbulent energy 
balance. The predicted distributions shown in Fig. 
7(b) display a very satisfactory agreement with the 
measurements of Bradbury [21]. 

Figure 8 shows that the similarity profile of the 
dissipation rate E predicted by JEPHTE is not sig- 
nificantly different from those obtained by Malin and 
Spalding [20] and Hossain and Rodi [22]. The experi- 

uniform stagnant environment. 
In a fully turbulent plume (G >> 1) the character of 

the flow is determined by the discharge densimetric 
Froude number F. Attention is here restricted to the 
limiting case of the pure plume (F z 0) where the 
initial momentum is either zero or negligible. 

Like the pure jet, the pure plume has a tendency 
to become self-similar after a certain development 
region. The similarity analysis yields the following 
laws [17] : 

d& -_=s 
dz a, 

(29) 
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FIG. 7. Similarity profile of turbulent kinetic energy (a) and turbulent kinetic energy balance (b) in 
pure jet. Experimental data : Bradbury 1211: dark symbols. Predictions : +, Malin and Spalding [20] ; 

Hossain and Rodi [22] ; -, JEPHTE (present work) ; ----, GSHIFT [6]. 

Numerical results concerning the decay-laws, equa- 

tions (30) and (31), have been previously reported by 
Hossain and Rodi [22] and by Chen and Chen [25] 
using buoyancy extended versions of the k-6 or k-e 
8’ turbulence models through algebraic stress/flux 

the 
X, 

modelling (ASM), and by Malin and Spalding [20] 
using a k-W’3 model. 

Table 3 shows the comparisons concerning the 
decay law constants B, and Be. As can be observed 
the numerical predictions obtained with the standard 
k-c model JEPHTE (C, = 0.09) are consistently 
higher than the reco~ended experimental data [ 171. 
More satisfactory results are obtained when C, is 
sensitive to the buoyancy discharge via functional 
relationship (15). Furthermore, for the flow 
considered, the comparison with models using ASM 
relations is then not unfavorable to JEPHTE. 

The ability of the present model with C,, =f(F) 
to produce the correct relative behaviour as regards 
velocity and temperature is improved as can be seen 
in Table 4. The spreading rates SWpandSB, work in 

FIG. 8. Simila~ty profile of the dissipation rate E in the pure jet. For legend, see Fig. 7. 
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Table 3. Decay-law constants in a pure plume 

B, & 

Recommended experimental data [ 171 
JEPHTE C, = 0.09 
JEPHTE C,, =f(F) (15) 
k-8 with ASM (Hossain and Rodi [22]) 
k-&?* with ASM (Chen and Chen [25]) 
k-W3 (Malin and Spalding [ZO]) 

.__..._~ 

1.9 2.4 
2.31 2.66 
2.10 2.43 
1.98 2.60 
2.28 2.15 
2.03 2.43 

Table 4. Spreading rates in a pure plume 

S WP & 
. 

Recommended experimental data [ 171 0.12 0.13 
JEPHTE C, = f(F) (15) 0.112 0.129 
k-e wi&r ASM (Hossain and Rodi 1221) 0.127 0.125 
k-W”4 (Malin and Spalding [20]) 0.121 0.135 
-~____.._--~ 

fairly good agreement with experimental values. 

Nevertheless the predicted level of the centre-line vel- 
ocity remains somewhat too high when compared to 

experimental data. 
The predicted mean velocity and mean tem~rature 

excess are compared in Fig. 9 with the expe~mental 
data of Rouse et aI. 1261. As already observed in the 
case of a pure jet (Fig. 6(b)) the temperature is patently 
overestimated at the edge of the flow. The same 
numerical reasons mentioned in Section 4.1 can be 
cited here. 

Figure 10(a) shows the predicted similarity profile 
of the turbulent kinetic energy k. Unfortunately in 
pure plume situations experimental measurements are 
not available so that a direct comparison is not poss- 
ible. For comparative purposes, numerical results 
obtained by Hossain and Rodi [22] and Malin and 
Spalding [20] are also plotted. A very large dis- 
crepancy appears near the centre of the plume, 

JEPHTE predicts values about 45% lower than those 
obtained with other models. The dimensionless cen- 
tre-line levels of k are specified in Table 5 together 
with those of E. 

The computed turbulent kinetic energy balance 
shown in Fig. 10(b) is to compare with the one (Fig, 
7(b)) achieved in the pure jet case. At the plume axis, 
not only the production term goes to zero but also 
the convection term since the centre-line velocity is 
invariant with height. Therefore, the dissipation is 
only balanced by the diffusion. As can be seen the 
buoyancy production term B, equation (13), is not 
significant everywhere across the flow. That is at vari- 
ance with the predictions of Hossain and Rodi [22] 
and Malin and Spalding [ZO] who both obtained 
B/P z l/3. This discrepancy probably explains the 
self-similar profile of k (Fig. 10(a)). 

The buoyancy-production term, equation (13), 
involves the vertical turbulent heat flux a orig- 
inating in the buoyancy term of the Navier-Stokes 
equations from which the k-equation is derived. The 
present model makes use of an eddy diffusivity 
concept, equation (ii), which takes into account buoy- 
ancy effects in the k-equation only through the vertical 
gradient of the mean temperature. This gradient is 
important during the transient period when the plume 
starts but falls to a very weak level on the axis of 
the steady established flow. Moreover, ~O/C?Z changes 
sign across the plume producing a slight negative con- 
tribution of the buoyancy term in the outer area of 
the flow, i.e. q > 0.5 in Fig. 10(b). Although there is 
no reference data about heat flux in a pure plume it 
appears implausible that w@ becomes negative under 
the buoyancy influence. 

In spite of this restriction, the present work shows 
that the proposed model is suitable to correctly predict 
the mean behaviour of a verticaI plane pure plume. 

FIG. 9. Similarity profiles of mean velocity and mean temperature excess in the pure plume. Experimental 
data : 0, Rouse et nl. [26]. Predictions : +, Malin and Spalding [20] ; x , Hossain and Rodi 1221; p, 

JEPHTE (present work). 
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FIG. 10. Similarity profile of turbulent kinetic energy (a) and turbulent kinetic energy balance in the pure 
plume (b). For legend see Fig. 9. 

Table 5. Computed centre-line levels of k and E in a pure 
plume 

JEPHTE (present work) 
k--E with ASM 

(Hossain and Rodi [22]) 
k-E-8’ with ASM 

(Cha and Chen [25]) 
k-%‘4’ 

(Malin and Spalding [20]) 

4.4 x 1o-2 0.86 x 1om2 

7.7 x lo-* 1.43 x 1o-2 

8.5 x 10m2 1.2x 1om2 

7.5 x lo-* 1.46 x lo-’ 

4.3. Turbulent forced plumes 
In this section the general situation of the buoyant 

jet is considered where there are present both initial 
momentum and buoyancy. The character of the flow 
is determined by the densimetric Froude number Fat 
the exit. In a uniform stagnant environment, a forced 
plume behaves like a non-buoyant jet near the source 
(jet region) but like a pure plume in the far field (plume 
region) even if F is large. The jet and plume regions 
are separated by a transition region in which self- 
similarity cannot exist. 

Chen and Rodi [ 171 have proposed a universal sca- 
ling law for all three regions of plane forced plumes. 
They have introduced the following scaling quan- 
tities : 

z, = D,F2’3(p,/p,)“3 

W, = W,F- “$,JP~)“~ 

A@, = AOoFm “3(pO/pN)-2’3 
(34) 

to normalize various experimental data and present 
them in a unified way so as to allow an easy com- 
parison between predictions and measurements. In 
the present section, the same scaling quantities are 
used to normalize the calculated decay of the mean 
velocity and the mean temperature excess along the 
axis of the jet. 

The calculations are performed for densimetric 
Froude numbers F of 1000, 250, 100, 2.5, 10, 5, 2, 1 
and 0.5 so as to cover the full range between pure jet 
and pure plume. In each case, the inlet conditions 
are chosen in order to define the appropriate Froude 
number. 

Figure 11 compares the predicted results (symbols) 
with the experimental data (full lines) recommended 
by Chen and Rodi [17] in their very useful review of 
measurements concerning vertical turbulent buoyant 
jets. Their recommendations are 

jet region : z-z0 < 0.5~~ 

with A, = 2.4 (35) 

with A, = 2.0; (36) 

plume region : z-z0 > 5.Oz, 

with B, = 1.9 (37) 

B =24 
0 . . (38) 
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FIG. 11. Decay of centre-line velocity and temperature excess in plane forced plumes. p, Recommended 
experimental data [17]. Predictions: 0, C,, = 0.09; C, =f(F): 4, F= 0.5; A, F= 1; D, F= 2; V, 

F=~;H,F= lO;Q,F=25;0,F= lOO;O,F=250;0,F= 1000. 

Since only established flow is concerned with simi- 
larity laws, numerical results are plotted in Fig. 11 
only for z-z,, 2 1 OD,. A gradual change from jet-like 
to plume-like behaviour is observed which is in close 
agreement with the experimental data. However, as 
already shown in Table 3, calculations with lower 
Froude numbers overpredict the centre-line velocity 
( W,/ W, = 2.10) with respect to the experimental level 
( W,,,/ W, = 1.90). In Fig. 11, the dark symbols depict 
computed results obtained with the standard model 
(C, = 0.09). From Fig. 11 it can be seen that the 
predicted limits of the transition region agree with the 
recommended ones by Chen and Rodi [ 171. 

The scaling quantities (34) may be used to nor- 
malize the centre-line values of the turbulent kinetic 
energy k and its dissipation rate E ; the similarity laws 
yielding the following relations : 

jet region : z-z0 < 0.5~~ 

(40) 

plume region : z-z0 > 5.0~~ 

(41) 

(42) 

Figures 12 and 13 show the variations of these 
centre-line dimensionless variables with height. It can 
be seen in both figures that, except in the zone of flow 
establishment, all predictions fall into a single curve 
when the flow becomes established. In the jet region 

and in the plume region, the predictions verify the 
respective similarity decay laws, equations (39)-(42). 

5. CONCLUDING REMARKS 

A buoyancy-extended k--E model of turbulence has 
been developed in the present work for calculating 
turbulent plane jets and plumes issuing in a uniform 
stagnant environment. The model solves transport 
equations for the turbulent kinetic energy k and its 
dissipation rate E, completing the set of equations 
governing the velocity and temperature distribution. 
The mathematical model forms a closed unsteady sys- 
tem of elliptic partial differential equations solved by 
an MAC method [ 121. 

The buoyancy-extended version of the k-E tur- 
bulence model provides satisfactory predictions of the 
flow in self-similar jets. 

In the limiting case of the pure plume, an empirical 
relation assuming C, to be influenced by buoyancy 
was introduced. This improves significantly the 
model’s ability to describe the mean flow charac- 
teristics. However, in a steady established plume the 
predicted turbulent energy budget reveals a slight 
negative contribution from the buoyant production 
term. Although no experimental data is available con- 
cerning the turbulent kinetic energy in a pure plume, 
this result-originating from the adopted eddy diffu- 
sivity assumption-appears implausible. Grappling 
with more complex buoyant flows, it would probably 
be suitable to develop a refined modelling of buoyancy 
effects as those discussed by Rodi [ 11. 

Nevertheless the present model was seen to predict 
the mean dynamical and thermal fields in vertical 
plane buoyant jets with an accuracy sufficient for prac- 
tical purposes. 
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FIG. 12. Decay of centre-line turbulent kinetic energy in plane forced plumes : -, predictions JEPHTE 
(present work). 
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FIG. 13. Decay of centre-line dissipation rate in plane forced plumes: -, predictions JEPHTE (present 
work). 

Further work on the application of this model to 2- The primary results [6] concerning a 2-D forced 
D and 3-D turbulent buoyant jets vertically or hori- plume issuing vertically into a linearly stratified stag- 
zontally discharging into a stably stratified ambient nant or horizontally flowing environment are very 
fluid is actually in progress. encouraging. So the model will be applied in the future 
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to further more practical studies about the discharge 
of sewage effluent from a line source into a stratified 
ocean. 
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PREVISION NUMERIQUE DE JETS 2-D, PORTANTS OU NON, A L’AIDE D’UN 
MODELE DE TURBULENCE DE TYPE k-e 

R&m&Un modele de type k-e incluant les effets de flottabilitk a Ctt dheloppe afin de realiser la prevision 
numerique des champs dynamique et thermique de jets 2-D, portants ou non, s’Cpanouissant dans un 
milieu uniforme au repos. Le systtme r&ultant, d’&quations aux d&v&es partielles (continuiti, quantitk 
de mouvement, tempkrature, k Bnergie cinbtique de la turbulence et E son taux de dissipation), instationnaire 
et B caracttre elliptique dans l’espace est trait& au moyen d’un code approprid dknomm8 JEPHTE. Une 
version prenant en compte une influence de la portance du jet sur la viscosite equivalente v, due g la 
turbulence a tti test&e ; une relation empirique pour le coefficient C,, en fonction du nombre de Froude B 
la source a Bt& introduite. Les rdsultats numbriques du modble sont compares aux rtsultats expbrimentaux 
et $ ceux obtenus avec des mod&lisations plus &labor&es pour la prise en compte des effets de flottabilit6. 
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NUMERISCHE BERECHNUNG TURBULE~ER EBENER STRAHLEN UND 
ERZWUNGENER STRGMUNGSFAHNEN MIT HILFE DES k-e 

TURBULENZMODELLS 

Zuaammenfassung-Es wurde em urn den Auftrieb erweitertes k-a-Turbulenzmodell entwickelt, mit dem 
das Temperatur- and Geschwindigkeitsfeld in ebenen turbulenten Strahlen und erzwungenen 
Striimungsfahnen bei einheitlichem ruhendem Umgebungszustand berechnet werden kann. Die den 
ProzeD beschreibenden partiellen Differentialgleichungen (Kontinuitat, Quer- und Lingsimpuls, ther- 
mische Energie, kinetische Turbulenzenergie k und zugehiirige Dissipationsrate a) werden mit Hilfe eines 
Computerprogramms fur elliptische unstetige Differentialgleichungen gel&t. Es wurde eine Version unter- 
sucht, bei der C, als empirische Funktion der densimetrischen Froude-Zahl der Quelle angenommen 
wird. Die Berechnungen werden verglichen mit experimentellen Damn und/oder Ergebnissen, die mit 

komplexeren ModeBen des Auftriebse~ekts ermitteh wurden. 

PACYET TYPEYJIEHTHbIX IIJIOCKMX BbIHy)KAEHHbIX H 
CBOEOJIHO-KOHBEKTMBHbIX CTPYH C HOMOIIJbIO k-s MOflEJIM TYPBYJIEHTHOCTH 

hIIOTaIJIU-kI'IOJIb3OBiiHa k-c Monenb ryp6ynetirnocre c yveToM cmbl unaeyrecrw n~ia pacseTa 
nOJteii CKOpOCT&l H TeMI'IepU')'pbl B IlJIOCKWX ryp6yneurwbrx BbIH)'XCJJeHHbIX A CB060nHO-KOHBeKTUBHbIX 

CTpyIlX B OLWOpOJlHOii HetIO~BHKCHOfi Cone. c IIOMOIUbK) 3i$@eKTABHOfi ‘,WCJ,CHHOfi CXeMbI jlJIll 3,WNn- 

TH'feCKUX HeCTZUViOlia~HbIX ~H~~e~HllEf~bHb~X YpaBHeHHii pelUeHb1 O~~AeJIKlOWie LIli+~epeHIIWlb- 

Hbie )'paBHeHHR B SaCZTlibIX npOH3BOAHblX (Hepa3pbIBHOCTH, COXpaHeHHR KOnH'IeCTBa LIBW~eHSiR, 

TefInOB0i-i (<3HePTHH)),TyP6yneHTHOii KHHeTEi'teCK0i-i 3HeprlGi k U CROPOCTH ee ~HCC&i~aL@iH E). npOBe- 
peH0 npeanonoxeswe, corsracuo Ko~opo~y C, ecrb 3~nsipa~ecran +~HKWS mcna @pyna BSII~ ACTOR- 

HUKa. npOBeLteH0 Cpa~HeH~e~~ynbTaTOB pZW5eTOB C 3KC~ep~MeHTa~bH~M~ LlaHHbIMW A YNCJIf%tHbIMU 


